首頁>要聞 要聞
2017年諾貝爾獎陸續公布:題材高冷,成果實用
諾貝爾獎陸續公布:題材高冷,成果實用
冷凍顯微術、引力波、人體生物鐘分子機制都有什么用?
瑞典皇家科學院4日宣布,將2017年諾貝爾化學獎授予瑞士科學家雅克·杜博歇、美國科學家約阿希姆·弗蘭克以及英國科學家理查德·亨德森,以表彰他們在冷凍顯微術領域的貢獻。
諾貝爾化學獎
解讀冷凍顯微術
“抓拍”生命分子的高清照片
在生物體內,無數復雜分子不斷地運動著,形成又拆解、結合又分離,通過這些過程來實現各種生理功能。如果能任意“抓拍”高清照片、看清某個分子在特定瞬間的模樣,將使我們更深入地理解生命如何運作。
近幾年來迅速躥紅的低溫冷凍電子顯微術(Cryo—EM)就是這樣一種“抓拍”手段。2017年諾貝爾化學獎的三位獲獎者對該技術的發展作出了關鍵貢獻。
20世紀80年代初,工作于歐洲分子生物學實驗室的雅克·杜博歇提出了“急速冷卻”方案,奠定了低溫冷凍電子顯微術樣本制備與觀察的基本技術手段。
電子顯微鏡觀測的樣本通常是只含一層分子的薄膜,可以視為二維的。對大量散布的同一種分子拍攝二維圖像,再把這些圖像整合起來,就可以得到該分子的三維圖像。20世紀70年代,在紐約沃茲沃思研究中心工作的約阿希姆·弗蘭克開始進行這種“三維重構”的理論研究,開發出了多種數學工具和圖像處理方法。
1990年,英國劍橋分子生物學實驗室的理查德·亨德森小組報告了他們對一種色素蛋白進行的三維重構,這項成果是低溫冷凍電子顯微術的重要里程碑,證明“冷凍樣本-二維成像-三維重構”的確可以得到高分辨率的三維圖像。它標志著一種研究生物大分子結構的新方法已經成形,其思路與X射線晶體學迥異,可以給生物體內溶液中、處于工作狀態的分子“抓拍”快照。
近幾年來,傳統的電子顯微術照相機被可以直接檢測電子的設備取代,解決了圖像轉換導致細節丟失的問題,這個重大進展也是亨德森的貢獻。低溫冷凍電子顯微術的“高清時代”終于來臨。
諾貝爾生理學或醫學獎
解讀人體生物鐘分子機制
解決失眠的鑰匙
從藍綠藻到真菌、從植物到動物,地球生命普遍擁有一套內置的時鐘,以24小時為周期調節生理活動,以適應我們這顆行星的自轉和晝夜變化。獲得2017年諾貝爾生理學或醫學獎的三位科學家,在分子水平上揭示了生命時鐘怎樣“滴答”走動。
編輯:周佳佳
關鍵詞:2017年諾貝爾獎 陸續公布